Share Your Data and Control [t

An Open Solution to the Post-Corona Data Dilemma

2020-09-25

Ken Takaki, Yussef Milburn, & Yuxi Liu

What we want:

e Public Health
= collect a lot of data
= share with a lot of people
= use in a lot of ways
e Privacy & Security
= produce little data
= share with few people
m restrict usage

It is well known that
You can't have your cake and eat it.
But is it possible to

Share your data for public health and protect your privacy at the same time?

The key is control.
We use a curtain to protect our privacy.
... but that doesn't mean we close the curtain all the time!

We just decides when to pull it up.

But how does that translate into data privacy/control?

How it's done now?

Say a user wants to go abroad.

They need to submit

1. an anti-body test result

2. travel history
to

1. embassy (for visa application)
2. departure airport
3. entry airport

COVID-19 (2 B3+ 4 Kt sk
Certificate of Testing for COVID-19

Date of 1issue

2EHEA H
K 4 NAR— N EH
Name : Passport No. :
[¥ AHEHH 51
MNationality ! Date of Birth . Sex :

FREo#EH D COVID-19 [+ 2mERZIToHER., TOERIEITREOLBY THD,
LoT, ZOHMHEREMNT S,
This is to certify the following results which have been confirmed by testing

for CONVID-19 conducted with the sample taken from the above-mentioned person.

R ek i DPEEA R LR

Sample Testing for COVID-19 Result Result Date Remarks
(FROFhrESF | (FROPhneF =2/ (DR (SR ILA B

= & /Chock one of | Check ane of the boxes Sampling Date and Time

the boxes below) below)

C sangsgs <vity | LI EER T (real @

Masopharyngeal | time RT-PCR i)
Swahb nucleic acid @
amplification test

(real time RT-PCR)
Clugigs saliva | CleEs@iEkE (Lap
&)

nucleic acid

amplification test
(LAMP)

[l i e

antigen test (CLEIA)

E #E %R 4 Medical institution
£fr Address of the institution
Effi4# Signature by doctor

An imprint of
aseal HIF

Service Provider

Problems:

e m documents to n facilities = m x n forms!

Handwriting: errors? forge?

Is the TsowenLawsual hospital qualified to issue a certificate?
Misuse?
Leak?

Idea:

e et user control their own data

e Service providers use the same open format
Further problem:

e |ntegrity?

I

Verification

=

o~ B8

User Controlled
Data Server

Feature: Interoperability

The data format is open and well-known.
So any service provider can use the same format.

E.g. the user can transfer the data to embassy & airports without any conversion.

Taking a test

the medical facility issues the result

testing resl = {

)

)

}

verified medical

"time': '2020-09-21'
"facility': 'two-point hospital'’

'is _negative': True

_results.append(testing resl)

user sends the result to server (can be done automatically)

REQ_DATA_UPDATE

, REQ_DATA UPDATE: DATA_TEST_RES

req = { "type':
, DATA_TES
}

res = send(req)

print(res)

T_RES: [testing resl]

("update_success', None)

Travelling to places

travelling history = [(random(), random()) for _ in range(3)]
print(travelling history)
plot_dots(travelling history, 'bx')

[(©.883393606892517, ©.04510941498829235), (0.5241552541074321, ©.439746511781813
8), (0.7733363225742038, 0.03196467410673054)]

045 {
0.40 -
0.35
0.30
0.25 -
0.20
0.15 -
0.10 -

0.05 x

Send travel history to data server

req = { "type': REQ _DATA_UPDATE
, REQ_DATA_UPDATE: DATA_ TRAVEL
, DATA TRAVEL: travelling history
}

res = send(req)

print(res)

('update success', None)

User allows embassy to read data

req = { 'type': REQ _POLICY_UPDATE
, POLICY_KEY: 'embassy'
, REQ_POLICY UPDATE: { POLICY_VIEW: [DATA_TEST_RES, DATA_ TRAVEL]
, POLICY_UPDATE: []
, POLICY_COMPUTE: []

}
}

res = send(req)

print(res)

('update_success', None)

Embassy gets data from the server

req = { "type': REQ_SP
, POLICY_KEY: 'embassy'
, REQ_SP_ACT: POLICY VIEW
, REQ_SP_PARAM: DATA_TEST_RES
}
res = send(req)
print(res)

status, data = res

('service provider_success', [{'time':

tal’,

'is _negative': True}])

'2020-09-21",

"facility':

"two-point hospi

Embassy checks the test result
today = date.today()

is_recent = lambda x: x >= @ and x <= 5

is_qualified = lambda h: h in ['two-point hospital', 'another good hospital']

recent_tests = [test for test in data if is_recent((today -
date.fromisoformat(test['time'])).days) and is_qualified(test['facility'])]
if recent_tests and all(test['is_negative'] for test in recent_tests):
print('PASSED")
else:
print('DENIED")

PASSED

Automatic Handling: The user only needs to set the policy.

The data server will handle the data.

User sets policy to allow departure airport to read

req = { 'type': REQ _POLICY_UPDATE
, POLICY KEY: ‘'departure airport’
, REQ_POLICY UPDATE: { POLICY_VIEW: [DATA_TEST_RES, DATA TRAVEL]
, POLICY_UPDATE: []
, POLICY_COMPUTE: []
}
}

res = send(req)

print(res)

('update_success', None)

Departure Airport requests both data, and use a different requirement

But user doesn't need to do anything

req

1l
-~

"type': REQ_SP

, POLICY_KEY: ‘'departure airport
, REQ_SP_ACT: POLICY_VIEW

, REQ _SP_PARAM: DATA_TEST RES

}

res = send(req)

print(res)

status, tests = res
all neg = all(test['is_negative'] for test in tests)

('service provider_success', [{'time': '2020-09-21', 'facility': 'two-point hospi
tal', 'is_negative': True}])

Airport gets travelling history

req = { 'type': REQ_SP
, POLICY_KEY: 'departure airport'
, REQ_SP_ACT: POLICY_VIEW
, REQ_SP_PARAM: DATA_TRAVEL

res = send(req)

print(res)

('service_provider_success', [(0.883393606892517, ©.04510941498829235), (©.524155
2541074321, ©.4397465117818138), (0.7733363225742038, ©.03196467410673054)])

Airport checks travelling history

status, history = res

airport_db = deepcopy(fast database)

no_contact = not(any(close(p, case) for p in history for case in airport_db))

plot_dots(airport_db, 'rD', label='airport db")

plot_dots(travelling history, 'mo', markersize=20, fillstyle='none', label='user')
plt.legend()

<matplotlib.legend.Legend at Ox1bbc@e66370>
airport db *
0.8 - é user *

06

0.4 - (:) ¢

02 .

0.0 M *+ (O O

T T
01 02 03 04 05 06 07 0.8 09

1f both succeeds

if all neg and no_contact:
print('Good")
else:

print('Please return')

Good

Interoperability: The departure airports uses a different standard from embassy.
But they share the same data format.

User only needs to set the policy.

After departure, don't want the airport to read more data.

User updates policy to stop further sharing

req = { 'type': REQ _POLICY_UPDATE
, POLICY KEY: ‘'departure airport’
, REQ_POLICY UPDATE: { POLICY_VIEW: []
, POLICY_UPDATE: []
, POLICY_COMPUTE: []

}
}

res = send(req)

print(res)

('update_success', None)

If the airport tries to read

req

Il
—~

"type': REQ_SP
, POLICY_KEY: ‘'departure airport'
, REQ_SP_ACT: POLICY_VIEW
, REQ_SP_PARAM: DATA_TEST_RES
}
res = send(req)

print(res)

('not_conform_policy', None)

Exiting: The airport gets rejected.
User can stop giving data whenever it's not necessary.

They have total control over their data.

If a user can

e see what's been collected
e know where it's stored

e control their data in anyway, anytime

... maybe they want to share more!

Feature: Data Verification

the medical facility issues the result

testing res2 = { 'time': '2020-09-22'
, 'facility': 'another good hospital'
, '1s_negative': False # !NOTICE HERE!
}

1t also records the data to a reliable database (can be provided by a blockchain)

verified medical results.append(testing res2)

user sends the result to server, but modifies the data
modified = deepcopy(testing res2)

modified['is_negative'] = True

req = { 'type': REQ_DATA_UPDATE

, REQ DATA_UPDATE: DATA_TEST RES
, DATA_TEST_RES: [modified]

}

res = send(req)

print(res)

('update success', None)

embassy uses a new check
status, data = res
is_verified = lambda x: verify(x) #NOTIC: new check#

recent_tests = [test for test in data if is_recent((today -

date.fromisoformat(test['time'])).days) and is_qualified(test['facility'])]

if any(not(is_verified(test)) for test in recent_tests):
print("WARNING: Using qualified facility, but data unverifiable')
elif recent_tests and all(test['is negative'] for test in recent_tests):
print('PASSED")
else:
print('DENIED")

WARNING: Using qualified facility, but data unverifiable

Quick question

Why not just use the reliable database?
Because...

If verification is

e centralized, then decentralized data is meaningless.

e decentralized -> blockchain, not efficient to store data

In the reliable database, we only store proofs (certifications).

The proof

e isshorter
e doesn't reveal the content (c.f. zero-knowledge proof).

Limitation

e User: only simple datatype
e Format: not open, ad hoc
e Data server: simple tcp server

e \erification: no real certification
However,

e Lots of research on data format
= Resource Description Framework
= Linked Data Fragments

o Verification APl is similar

Future Work

e Design a COVID-19 related open data format
e Use real verification API
e Advocate the idea to a broader audience

Service Provider

M

Verification

B

=
So

Data Policy

User Controlled
Data Server

User

. Generate
Virus Check

Data

—————————————————

e -

User Controlled
Data Server

User Controlled
Data Server

Set

User Controlled

Data Policies Data Server

Set

N

User Controlled

Data Policies Data Server

Set

User Controlled

Data Policies Data Server

Data Policies

User Controlled
Data Server

Set

Data Policies

User Controlled
Data Server

User Controlled

Data Policies Data Server

Data Policies

User Controlled
Data Server

User Controlled
Data Server

Data Policies

Blockchain database

Verification ﬁﬁa

User Controlled

Data Policies Data Server

